首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70篇
  免费   32篇
  国内免费   38篇
测绘学   1篇
大气科学   1篇
地球物理   10篇
地质学   15篇
海洋学   69篇
综合类   15篇
自然地理   29篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2020年   1篇
  2019年   3篇
  2018年   2篇
  2017年   6篇
  2016年   4篇
  2015年   9篇
  2014年   12篇
  2013年   3篇
  2012年   8篇
  2011年   3篇
  2010年   4篇
  2009年   2篇
  2008年   10篇
  2007年   14篇
  2006年   2篇
  2005年   20篇
  2004年   5篇
  2003年   11篇
  2002年   4篇
  2001年   7篇
  2000年   2篇
  1998年   1篇
  1997年   1篇
  1988年   1篇
排序方式: 共有140条查询结果,搜索用时 406 毫秒
111.
Phytoplankton size classes (hereafter, PSCs) were derived from satellite ocean color data using a present phytoplankton abundance-based optical algorithm in the northern Bering and southern Chukchi Seas to characterize the spatial and seasonal variations of the different PSC and investigate the contributions of small phytoplankton to the total phytoplankton biomass. The comparison results showed that the phytoplankton abundance-based method approach could reasonably classify the three PSCs (pico-, nano-, and micro phytoplankton). The satellite maps of the dominant PSCs were derived using long-term satellite ocean color data. The general spatial distribution showed that the large (micro-) phytoplankton were dominant in the coastal waters and the west side of the Bering strait, while the small size (nano- or pico-) phytoplankton were dominant in the open ocean waters. Nano- and microphytoplankton were dominant in May and October in most of the study area, while pico-phytoplankton were dominant in the summer months in the open ocean waters. The annual variation in small phytoplankton dominance had a strong positive relationship with the annual mean sea surface temperature (SST), which is consistent with the increasing dominance of small phytoplankton biomass as water temperature increases. Microphytoplankton have an apparent increasing trend in the southeastern Chukchi Sea but slightly decreasing trends in Chirikov and St. Lawrence Island Polynya (SLIP). In contrast, there were increasing trends in picophytoplankton in Chirikov and SLIP, which seems to be related to increasing annual SST. It is crucial to monitor changes in dominant groups of phytoplankton community in the Bering and Chukchi Seas as important biological hotspots responding to the recent changes in environmental conditions.  相似文献   
112.
To quantify changes in organic carbon inputs and preservation, sediments from the Northern Chukchi Sea spanning the last 9000 years of the Holocene period were collected during the HOTRAX expedition and analyzed. The multi-proxy approach included molecular organic markers, bulk carbon and isotope measurements plus more recent approaches to terrestrial carbon estimation (the BIT index of Branched and Isoprenoid Tetraethers). The upper 1100 cm of the core, corresponding to the last 7.4 ka, showed a relatively stable total organic carbon content of 1.13-1.38% which decreased below 1100 cm to 0.6%. C:N ratios ranged from 8.4 to 10.83 over the Holocene time period examined. The distribution of n-alcohols and n-alkanes revealed major contributions from long-chain n-alcohols and n-alkanes while minimal contributions were seen from short-chain n-alkanes. The majority of the total fatty acids was comprised of saturated and monounsaturated fatty acids with short-chain and long-chain saturated fatty acids present in similar concentrations throughout most of the core and monounsaturated fatty acids decreasing down-core. Total sterol concentrations showed considerable inputs from marine sterols, C28Δ5,22, C28Δ5,24(28) and dinosterol, as well as C29Δ5, typically considered a terrestrial marker. The BIT indices for core sediments ranged from 0.021 to 0.216 with minor changes seen in older sequences. Overall, organic biomarkers indicate marine sources as the more dominant input of organic matter with lower but continual contributions from terrestrial sources at this location during the Holocene. The remarkable consistency among multiple molecular organic markers of both marine and terrestrial origin over the Holocene period encompassed by the core suggests that sinking material or surface sediments were heavily influenced by bottom currents or other mixing processes prior to their deposition.  相似文献   
113.
西北冰洋中太平洋入流水营养盐的变化特征   总被引:11,自引:5,他引:6       下载免费PDF全文
利用1999,2003和2008年夏季(7-9月)三次中国北极科学考察数据资料,分析和讨论太平洋入流水营养盐的分布和楚科奇海关键生物地球化学过程对太平洋水化学性质的改造.结果表明,2003和2008年在白令海峡南部64.3°N纬向断面(BS断面)由于水团性质差异显著,营养盐呈西高、东低的分布趋势.2003年BS断面水柱...  相似文献   
114.
对2003年中国第二次北极科学考察所获得的部分表层沉积物样品进行了总水解氨基酸(THAA)、氨基糖(HA)的测定。不同区域氨基酸主要成分不同,楚科奇海站位的氨基酸主要成分为甘氨酸(Gly)、谷氨酸(Glu),位于加拿大海盆的B80、B11、P27站THAA的主要成分为丝氨酸(Ser)。沉积物的总有机碳(TOC)、总氮(TN)、THAA、HA含量等特征随区域不同有较大差别,白令海峡的BS11站TOC、HA含量最低,加拿大海盆的B80站THAA、TN含量最低。楚科奇海R03站TOC、TN为最高,THAA在R11含量达最大值,HA在楚科奇海台的P11站最高。初步讨论了楚科奇海—加拿大海盆表层沉积物中氨基酸的空间分布,根据氨基酸选择性降解和主成份分析结果引入DI”指标,并对七个站位表层沉积物有机质新鲜程度进行了比较,新鲜度由大至小顺序为C15>BS11>R11>S11>P11>R03>B80,这与表层沉积物来源、水动力条件等有关,由此推测楚科奇海陆架、白令海峡沉积物有机质较楚科奇海台、加拿大海盆较为新鲜。  相似文献   
115.
北冰洋夏季海冰覆盖面积在2012年达到低值。为了了解海冰变化对浮游动物群落的影响, 利用夏季西北冰洋22个站位的网采样品, 通过种类组成和丰度研究了群落的类型、结构和地理分布, 探讨了其分布特征与环境因子的关系。根据记录到的54种(类)浮游动物, 21站位可以划分成在地理上基本隔离的三个浮游动物群落: 楚科奇海南部群落, 藤壶幼体数量占优, 站位丰度百分比在56.6%—79.8%之间, 桡足类次之(18.0%—42.2%), 同时还含有少量的白令海种类;楚科奇海中北部群落以广布性桡足类占绝对优势(62.3%—96.8%), 藤壶幼体次之(0—30.9%);深海群落浮游动物的丰度极低, 组成上以桡足类为主(71.6%—89.8%), 且多数是体型较大极地种。楚科奇海陆坡边缘的M06站丰度较高但是种类组成与深海站位相似, 没有归入任何群落。两个浅水群落优势种都是北极哲水蚤(Calanus glacialis)、伪哲水蚤类(Pseudocalanus sp.)、圆胃住囊虫(Oikopleur vanhoffeni)以及藤壶幼体(Barnacle larva), 但优势度各异。深海群落优势种较多, 北极哲水蚤(Calanus glacialis)、极北哲水蚤(Calanus hyperboreus)、细长长腹水蚤(Metridia longa)以及北极拟真刺水蚤(Paraeuchaeta glacialis)等体型较大的桡足类优势度较高, 体型较小的矮小微哲水蚤(Microcalanus pygmaeus)、长腹剑水蚤(Oithona similis)优势度相对较低。与群落类型按维度和深度的变化趋势一致, 统计分析显示表层温度和表层盐度是最重要的影响因子。与海冰覆盖面积较高的2003年相比, 群落类型和地理分布没有显著变化, 但是楚科奇海浮游动物丰度增加了1—2倍, 深海群落丰度降低而组成上大型种类比例升高。  相似文献   
116.
楚科奇海浮游植物的分布与环境因子的关系   总被引:4,自引:0,他引:4  
根据1999年7—8月“雪龙”号考察船在楚科奇海采集的样品,运用PRIMER软件分析该区网采浮游植物的分布特征及其与环境因子的关系。结果表明:楚科奇海浮游植物群聚可分为三个生态类群:北极-亚北极类群,主要分布于水深大于2000米且受北冰洋影响较直接的东北部浅水浮冰外缘;北方温带类群,主要分布于水深小于100米的中部浅水浮冰区:广温性类群,主要分布于通过白令海峡与北太平洋进行水交换的南部水域。该区浮游植物平面分布差异大,细胞密度站间变化范围为1.6×10^3~90680.2×10^4,物种多样性指数和均匀度站间变化范围分别为0.07~O.87和0.33~3.82。主成分(PCA)分析表明,对楚科奇海浮游植物分布起支配作用为水温和盐度。此外,由于该海区所处的特殊地理环境,浮冰的位黄及其物理状态(聚集、开裂和消融等)均会增加浮游植物分布的变异。  相似文献   
117.
A detailed analysis of dissolved organic carbon (DOC) distribution in the Western Arctic Ocean was performed during the spring and summer of 2002 and the summer of 2003. DOC concentrations were compared between the three cruises and with previously reported Arctic work. Concentrations of DOC were highest in the surface water where they also showed the highest degree of variability spatially, seasonally, and annually. Over the Canada Basin, DOC concentrations in the main water masses were: (1) surface layer (71±4 μM, ranging from 50 to 90 μM); (2) Bering Sea winter water (66±2 μM, ranging from 58 to 75 μM); (3) halocline layer (63±3 μM, ranging from 59 to 68 μM), (4) Atlantic layer (53±2 μM, ranging from 48 to 57 μM), and (5) deep Arctic layer (47±1 μM, ranging from 45 to 50 μM). In the upper 200 m, DOC concentrations were correlated with salinity, with higher DOC concentrations present in less-saline waters. This correlation indicates the strong influence that fluvial input from the Mackenzie and Yukon Rivers had on the DOC system in the upper layer of the Chukchi Sea and Bering Strait. Over the deep basin, there appeared to be a relationship between DOC in the upper 10 m and the degree of sea-ice melt water present. We found that sea-ice melt water dilutes the DOC signal in the surface waters, which is contrary to studies conducted in the central Arctic Ocean.  相似文献   
118.
An understanding of the carbon cycle within arctic sediments requires discrimination between the terrigenous and marine components of organic carbon, insight into the removal mechanisms for labile carbon during burial and appreciation of shelf-to-basin processes. Using a large data set of multiple molecular organic markers (alkanes, alkanols, sterols, saturated and unsaturated fatty acids, dicarboxylic acids), we apply (1) principal components analysis (PCA) to obtain a robust comparison of biomarker compositions in Arctic Ocean sediments, (2) geometric mean (GM) linear regression of the PCA variables to estimate the relative contributions of labile/marine and stable/terrigenous sources to each biomarker and (3) the slope of the GM regression of each biomarker with TOC to provide a novel measure of the removal rate of each biomarker relative to phytol. The PCA- and TOC-based indices generally increase together: biomarkers with very high TOC-based removal rates such as the saturated and unsaturated n-alkanoic acids generally have a high labile/marine content from PCA, while the sterols have low removal rates, but exhibit a range of labile/marine content values and the n-alkanes and n-alkanols have low values for both. A dominant feature of all PCA models examined is a progressive decrease in the autochthonous/marine biomarkers with each increase in sediment core depth, which points to a universal diagenetic alteration of organic carbon with depth in the cores. The PCA model also displays a shelf to basin trend that is non-diagenetic and implies the ongoing (centuries or more) delivery of long-chain n-alkanes, n-alcohols and n-alkanoic acids in a matrix that is pre-formed and well-preserved within the sediments. Terrigenous biomarker distributions within the PCA model suggest that atmospheric transport of plant waxes in aerosols and the water borne transport of very fine plant macerals likely have significant roles in the export of these vascular plant biomarkers to the basins. Biomarker ratios and profiles of the PCA-based labile/marine content with core depth indicate that the PCA model is more strongly influenced by the biomarker lability than the marine content, while increases in the marine content are largely responsible for the shifts in composition for near-surface core sections.  相似文献   
119.
A key goal of the Western Arctic Shelf Basin Interactions program is to understand how physical and biological processes together impact shelf–basin exchange of biological, chemical, and physical properties. High-resolution vertical distributions of plankton and particles were obtained using an Auto Video Plankton Recorder from 29 locations on the Chukchi Shelf, in the deep Beaufort Sea, and across the Beaufort–Chukchi Shelf-break during a cruise on the USCGC Healy in July–August, 2002. Coincident velocity estimates were collected using hull-mounted acoustic Doppler current profilers. Images of plankton and particles were extracted automatically and identified manually to taxa and type. Copepods, diatom chains, decaying diatoms, marine snow, and radiolarians were the most abundant categories observed. Distinct regional differences in abundance were observed that were associated with different oceanographic regimes and with the prevailing circulation in the region. Vertical distributions were closely associated with the physical structure of the water column. A sharp horizontal discontinuity in abundance of all categories between shelf and basin was observed, located over the shelf break and potentially established and maintained by transport of plankton and particles along-shelf to the east rather than northwards towards the basin. Barrow Canyon and the shelf and shelf-break east of Barrow Canyon had very high concentrations of plankton and particles, especially marine snow, that may have resulted from elevated production on the eastern Chukchi Shelf that subsequently was advected out of Barrow Canyon and to the east. Comparisons of downward flux, estimated from particle sinking rates based on individual marine snow particle size, and horizontal velocities suggested that much of the marine snow carbon was sinking to the benthos of the Chukchi Sea prior to being advected off-shelf. Velocities and plankton concentrations together indicated that little off-shelf flux of plankton or particles to the basin was occurring except in an eddy located off of the Beaufort Shelf.  相似文献   
120.
In the spring and summer of 2002 primary production in the Chukchi Sea was measured, using 14C uptake experiments. Our cruise track encompassed the shelf and continental slope area of the Chukchi and Beaufort Seas progressing into deep water over the Canada Basin. The study area experienced upwards of 90% ice cover during the spring, with ice retreating into the basin during the summer. Production in the spring was light-limited due to ice cover, with average euphotic zone production rates of <0.3 g C m−2 d−1. Values of 8 g C m−2 d−1 were observed in association with surface bloom conditions during the initial ice breakup. Considerable nutrient reduction in the surface waters took place between the spring and summer cruise, and although not observed, this was attributed to a spring bloom. Decreased ice cover and increased clarity of surface waters in the summer allowed greater light penetration. The highest rates of production during the second cruise were found at 25–30 m, coincident with the top of the nutricline. Daily euphotic zone productivity in the summer averaged 0.78 g C m−2 d−1 on the shelf and 0.32 g C m−2 d−1 on the edge of the Canada basin. These data provide an estimated annual production of 90 g C m−2 yr−1 in the study area.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号